Form Approved

REPORT DOCUMENTATION PAGE e o

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of thes
collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 jetfersar
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and 8udget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED i
Interim; 7/93-11/95 i
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

EQUATIONS FOR THE EXTENSION AND FLEXURE OF RELATIVELY
THIN THERMOPIEZOELECTRIC PLATES SUBJECTED TO LARGE
ELECTRIC FIELDS

6. AUTHOR(S) DAHHO“P“Q&G*O‘D\N]"

J.S. Yang and R.C. Batra

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

University of Missouri-Rolla, Rolla, MO

Virginia Polytechnic Institute and State University,
Blacksburg, VA

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER
U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709-2211 A’ﬁzo 92109, 32-mAsM ;

11. SUPPLEMENTARY NOTES
The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.
12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

A system of approximate two-dimensional equations for the extensional and
flexural motion of thermopiezoelectric plates subject to large electric fields
is derived from the three-dimensional equations of thermopiezoelectricity for
small strains, small temperature variations, and strong electric fields. The
two-dimensional equations are derived by introducing an appropriate expansion
for the mechanical displacement, temperature field, and electric potential in
the thickness-coordinate and integrating the balance laws and constitutive
relations.

/9960209 123

14. SUBJECT TERMS 15. NUMBER OF PAGES

Thin piezoelectric plates, thermoelasticity 16 PRICE COOE

17. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRAC-
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev I-%%
D1IC QUALITY INSPECTED 1 breacrioed by ANSI Std 739-'3

298-102




DISCLATHER NOTIC

‘NC

"THIS DOCUMENT IS BEST
'QUALITY AVAILABLE. THE
COPY FURNISHED TO DTIC -
CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
NOT REPRODUCE LEGIBLY.




Romesh C. Batra (Ed.)

Contemporary Research
in Engineering Science

With 304 Figures

%)) Springer 1945,




Equations for the Extension and Flexure
of Relatively Thin Thermopiezoelectric Plates
Subjected to Large Electric Fields
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ABSTRACT

A system of approximate two-dimensional equations for the extensional and flex-
ural motion of thermopiezoelectric plates subject to large electric fields is derived
from the three-dimensional equations of thermopiezoelectricity for small strains,
small temperature variations, and strong electric fields. The two-dimensional equa-
tions are derived by introducing an appropriate expansion for the mechanical dis-
placement, temperature field, and electric potential in the thickness-coordinate and
integrating the balance laws and constitutive relations.

I. INTRODUCTION

Recently electroelastic equations for the extensional motion of very thin plates
with fully electroded major surfaces subject to large driving voltages and undergoing
small strain were derived (1] from the general nonlinear electroelastic equations {2,3].
These equations have been used to analyze of static and dynamic deformations of
laminated beams and plates due to piezoelectric actuators [4-6]. A set of two-
dimensional equations was subsequently obtained [7] for a higher order approximate
description of the mechanical and nonlinear electrical behavior of the relatively thin
electroelastic plates in extensional and flexural motion. The equations are valid for
either the electroded or unelectroded plates and hence have been used (8] to analyze
partially electroded actuators which have been shown to have a distributed shear
stress rather than a singular shear stress of fully electroded actuators. This prevents
the delamination of the piezoelectric layer from the base plate.

In the above analysis, only piezoelectric effect is considered, and thermal effect
is not included. According to a recent review article by Rao and Sunar (9], the

* Present address: Department of Mechanical Engineering, Aeronautical Engi-
neering and Mechanics, Renselaer Polytechnic Institute, Troy, NY 12180.
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composite intelligent structures have different response characteristics at different
temperatures and the temperature variation in the piezoelectric materials can affect
the overall performance of the control system, hence thermal effects are important
in the precision distributed sensing and control of intelligent structures. Accord-
ing to Rao and Sunar, the applications of thermopiezoelectricity theory to practical
engineering problems in general and vibration control of flexible structures in par-
ticular, are very few in the literature and the development of thermopiezoelectric
sensors/actuators is important for advanced intelligent structures.

Mindlin [10] derived a set of two-dimensional plate equations based on the linear
theory of thermopiezoelectricity for small strains, small temperature variations, and
weak electric fields. Recent works on laminated thermopiezoelectric plates [11,12] are
also for the linear theory and weak electric fields. It has been noted that piezoelectric
materials are often operating under large driving voltages or strong electric fields
(1] hence nonlinear terms in electric fields should be considered. Besides, in [11,12],
only equations of the balance of linear momentum are derived but the electric charge
equation and the heat equation are not included. The electric and thermal fields
have to be obtained separately and hence these equations can not be applied to
structures with partially electroded actuators.

A set of equations for electroded very thin thermopiezoelectric plates subject to
large driving voltages or strong electric fields in extensional motion is derived in (13]
based on the general nonlinear equations of thermopiezoelectricity [14]; the work in
{13] generalizes that reported in [1] to include thermal effects. Here, a system of
two-dimensional equations for the extensional and flexural motion of thermopiezo-
electric plates subject to large electric fields is derived from the three-dimensional
equations of thermopiezoelectricity for small strains, small temperature variations,
and strong electric fields. The two-dimensional equations are derived by introducing
an appropriate expansion for the mechanical displacement, temperature field, and
electric potential in the thickness-coordinate and integrating the balance laws and
constitutive relations through the thickness. The resulting equations are reduced
to the uncoupled system of equations describing extensional motion and elementary
flexure. These equations generalize those in [7] by including thermal fields. The
equations are valid for either the electroded or the unelectroded plate and hence can
be used to analyze either fully or partially electroded actuators.

I1. BASIC EQUATIONS

It has been shown [13] that the thermoelectroelastic equations for infinitesimal
strains, small temperature variations, and strong electric fields may be written as

Tiji = pi;
Dii=0
—Qii=Tpy

1.
Tij = CijSk — exi; Ex — ;0 — §bk1ijEkEI
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1
D; = eiktSk + € Ex +Pi0 + §ijiEkEf (1)
1
= ’\US‘] + pkEk + af + é"ncJEkEJ
Qi = ~kis0
1
Skl = §(uk,1 + ul,k)
Ep=—¢) .

Here a comma followed by an index ! denotes partial differentiation with respect
to the referential coordinate z1, a dot over a variable denotes partial differentiation
with respect to time and repeated indices are to be summed. The range of indices
4,7,k,1i51,2,3. In Eq. (1) pis the mass density, 7;; the stress tensor, u; the mechan-
ical displacement, Si; the infinitesimal strain tensor, Dy the electric displacement
vector, ¢ the electric potential, E; the electric field, Q; the heat flux, 5 the entropy
density, T' a uniform reference temperature, and 6 the temperature variation. Cijki,
€ikl, €k denote the elastic, piezoelectric and dielectric constants, A;; the thermal
elastic constants, p; the pyroelectric constants, « is related to specific heat and Kij

is the heat conductivity tensor. 13,5,,-,-, Xkji» and -;; are nonlinear material constants.

We note that i)kz,-j, the effective electrostrictive constants, include the effect of the
Maxwell electrostatic stress tensor [13]. Equation (1)1 is the balance of linear mo-
mentum, (1); the electrostatic charge equation, (1); the heat equation, (1)4—7 the
constitutive equations, (1)s the strain-displacement relation, and (1)g the electric
field-potential relation. When the electric fields are weak, quadratic terms on the
right-hand side of equations (1)4-¢ are dropped and Eq. (1) then reduces to that for
linear thermopiezoelectricity.

III. TWO-DIMENSIONAL EQUATIONS FOR THIN PLATES

A plan view and a cross-section of the thin plate with thickness 2k are shown
in Figure 1 along with the coordinate system. The top and bottom surfaces may
be identically electroded; the electrodes in a given region are assumed to have a
potential difference or voltage across them.

We now obtain approximate two-dimensional mechanical equations of motion,
charge equation of electrostatics and heat equation for the thin plate shown in Figure
1 by employing assumed expansion of uj, ¢, and 6 in the thickness coordinate.
Since only the lowest frequency approximations, i.e., equations of the extensional
and flexural motion of plates are of interest here, we expand u; in the form

uj = u_g-o)(ma, t) + a:gu;l)(za, t)+ zgug-z)(xa, t) (2)
in which u{? is included to allow for the free thickness-strains accompanying ele-
mentary flexure {7]. We also adopt the convention that indices a,b,c,d take values
1,2. Considering the behavior of ¢ across the electrodes when they are present,
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Fig. 1, Plan view and cross-section of a partially electroded thin plate.
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we expand ¢ in the form

z z2 z3, 13

# =000 8) + 326020, 0) + (5~ 1)6D(ay, 1) 4 720G 0@ )
in which only the ¢(!) term contributes to the voltage across the electrodes. Equation
(3) is basically taken from (7], with the difference that here we have ¢(® but the
corresponding equation in {7] does not; (% is needed for a complete description of ¢
in the unelectroded region, although in the case treated in 8] it has no contribution.
In an electroded region the two-dimensional plate electric potentials ¢(®) and )
must be independent of coordinates Zq in the plane of the plate. However, in an
unelectroded region ¢(°) and M are in general functions of coordinates zg. Clearly,
this expansion could be carried to higher order, but this is the lowest order that is
needed to fully describe the response of a partially electroded thin plate. For the
temperature field 8, we take [10]

8 =0 (zq,) + 2360z, 1) (4)
Next, we multiply equation (D1 by {1,z3,22}, the electric charge equation (1),

by {1,z3/2h,z3/h? 1, (zg/hz—l)x;;/h}, the heat equation (1); by {1,z3}, integrate
the resulting equations from —A to A and obtain the following nine two-dimensional




658

equations corresponding to the balance of linear momentum

2
7 nTB(Z_l) + Fk(") =py, Hm,.ilﬁ") , n=0,1,2 (5)

ak,a
m=0

four two-dimensional electric charge equations

DO+ <o

1 1

1o _Lpo, o_

o Dea = gpDa" +dg7 =0 -
1 o 2 . ‘-
E—Z-Dﬁ,a)—DE,ﬁ—;;Da =0

1 1 3 2 1
h—sDi‘,‘a)—gDéfz—h—sDé)+ED§°)=o

and two two-dimensional heat equations
0 .
Q) + ¢ = ~Tpi®
Q) - + ¢V =~
where

h
{T/SF)vD(n))QE")»TI(")} =[-h JE{Tk[,Dk,Qk,T]}d:I:;

1 n n n
srlEs Dl Y = 23]t (8)
8

2
Hoo =2k, Hpp=Hpp=0, H11:§h3

P = (agltn, &7 =

2 2
H02=H20=§h3, Hyg=Hy =0, Hp-= ghs

and we note that terms Fj("), dg") and qgn) arise from the integration by parts.

Terms dgz) and dga), which are analogous to dgu) and dgl), vanish because the r3
dependence of coefficients of ¢(2) and ¢(3) vanish at z3 = +h. We also note that
in the balance of linear momentum equations (5) the three equations for n = 2
will not actually occur because they will be eliminated by allowing for the free
development of uﬁz) accompanying anisotropic flexure [7]. In an electroded region
in which ¢() = V ¢(9), where V equals the voltage, is a constant and the first two
equations of (6) are not needed to obtain the solution. They simply serve to define
dgo) and dgl) in terms of the electric displacement D. However, in an unelectroded
region in which V' is not prescribed these equations are required to obtain a solution.
Similarly, if temperature is known on both major surfaces of the plate, 8(0) and
() are determined directly from (4) and equation (7) is not needed to obtain the
solution; it serves to determine qgo) and q§1 in terms of other variables. However. if
heat flux is prescribed at either one of the major surfaces of the plate, equation (7)
1s needed to obtain a solution.
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At this point we have nine two-dimensional stress equations in (5). However,
since we are interested in obtaining only the uncoupled equations of anisotropic
extension and elementary flexure, it is convenient to rewrite these as separate es-
sentially extensional and essentially flexural equations. We note these equations are
coupled due to anisotropy of the plate material. We further note that we can not
complete the reduction without the plate constitutive relations, which are obtained
in the next section. For the plate constitutive equations it is convenient to define
Mindlin’s plate strains, which is done simply by substituting the expansion (2) into
the strain-displacement relation, Eq. (1)g, and rearranging terms; the result is

1

Sl + 4l 4+ (n+ (Gl + &Y (9)

2
Sij =3 ops, s =
n=0

We now note that we will not need Si(f) because of the reduction that is to be made.
When elementary flexure and extension are to be uncoupled, from (5), following the
steps in [7], we may separate the essentially extensional plate equations,

ab,a

o + B = 25hi{® 4 gph3ill(,2)
2
e =755 + ) = Zphtal) (10)

T~ 4 FP = ?%phzil,(,o) + gpfﬁug”

ab,a

from the essentially flexural plate equations,

ad,a

9+ FO = 2phi(9 4 %ph%gz)

=D+ B = D) ()

ab,a

rlla =2+ B < Snil) 4 Sl

ad,a

In the case of extension we must first allow for the free plate thickness-strains

Sgg) by setting Ts(g) = 0. Then in order to eliminate the first order extensional

equations completely we set ‘r3(i) = 0. This has the effect of eliminating the second
order equations in (10) completely since all second order plate stress resultants Ti(f)
are irrelevant in the approximation, and may be ignored, as may the dynamic terms
on the right-hand side of (10)3 and (11);. Furthermore, in order to eliminate flexure

from the extensional equations, from (11) it is clear that we must have T,Eg) =0,

Ta(;) =0, 1-3(;) = 0. Collecting all the conditions on the stress resultants, we have

(0)

n)=0, M=o (12)

57

the first of which will be used, in the next section, to reduce the general plate
thermopiezoelectric constitutive equations to those that are suitable for anisotropic
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extension. Since we have eliminated flexure, therefore ﬁgo) = 0. Also since we are
well below the lowest thickness resonant frequency of the plate, we may assume

115-1) =0, 1'1;2) =0, then all that remains out of (10) is
o+ FO = 2phi{® (13)
which are the two equations for the extensional motion of thin plates.

For flexure, we must first allow for the plate thickness strain 53(;) by setting
(D = 0. This has the additional effect of eliminating the second order flexural
equation completely because, as already noted, all second order plate stress resul-
tants are irrelevant in this approximation, and may be ignored. Then in order to
eliminate extension from the flexural equations, from (10) it is clear that we must

have 7'52) =0, ‘ra(;) =0, 1'3(2) = 0. These conditions enable us to write

=0, ©W=o, O_ (14)

the first of which will be used, in the next section, to reduce the general plate
thermopiezoelectric constitutive equations to those that are suitable for elementary
flexure of thin plates. Since we have eliminated extension, therefore il,(,o) = 0. Also,
since we are well below the lowest thickness resonant frequency of the plate, we may
assume that &5_1) =0, ilg-z) = 0. In order to complete the reduction to the elementary
theory of flexure we must take the thickness shear strains S§2) to vanish [7], with
which (9) yields
0 -
'u((zl) = —ug’z (IO)
which enables us to obtain a single equation in the one dependent variable ugo) in the
elementary theory of the flexure of thin plates. Utilizing i'tgl) =0, which eliminates
rotary inertia, we obtain 7'3(3) from (11),, which when substituted into (11); yields
1 1 0 .. (0
T‘Sb')ab + Fb(,b) + F3( ) = 2phu§ ) (16)
This is the equation for the elementary theory of the flexure motion of thin plates.
Thus, at this stage we have the extensional equations of motion (13) which
require constitutive equations for ‘r‘fg), the flexural equations of motion (16) which
need constitutive equations for th;) , the four plate equations (6) for electrostatics
which necessitate constitutive equations for D,g") (n=0,1,2,3), and two plate heat-
conduction equations (7) which require constitutive relations for Q;cn) (n=0,1) and
7™ (n =0,1). As noted earlier, the constitutive equations will be derived in the
next section in terms of the nine dependent variables ugo) , ¢(®) (n=0,1,2,3) and
6 (n =0,1).
To the foregoing plate equations we must adjoin the appropriate initial and
boundary conditions. For the equations of anisotropic extension (13), at an interface
separating one region from another we have the well-known continuity condition

nalrP) =0, [P1=0 (17)
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where n, denotes the unit normal directed from the “—" to the “+" side of the
interface and, in which we have used the usual notation [A] = At —A~ for the jump.
At the edge either nar,ff) or ugo) or some combination thereof is prescribed. For the
equation of elementary flexure, at an interface we have the continuity condition

0 0 , Iiy Ju’ (0 (18)
n“[Tab]nbzo’ [Tu3+ as]:()a [’W1=0’ [u3ﬂ=0

where

e =mng ) = narls, (19)

and s; denotes a unit vector tangent to an interface of separation in the counterclock
direction. At an edge either nara(;)nb and T,(lg)-f—(?n(.i)/as or 8u§0)/3n and u§°) or some
combination thereof is prescribed. In addition, there are the well-known conditions
across corners of discontinuous curves.

In the case of the two-dimensional plate equations of electrostatics (6), at an
interface separating one region from another, we require the continuity conditions

[6™]=0,n=0,1,2,3 (20)

In addition, by multiplying the well-known three-dimensional electrostatic continuity
conditions [Dan.] = 0 by {1,z3/2h,23/h% — 1, (z3/h? — 1)z3/h}, and integrating
the resulting equations from —k to A, we obtain the following two-dimensional plate
continuity conditions

na[D]=0, nafD{M] =0 21
na[DP) ~ k2D =0, n [DE) - h2DW] = ¢ )
At an edge either 7, D", g DI, ng(DS) — h2D{)) and ng (D) — r2DY) or ¢(O,
0. () and ¢® or some combination thereof is prescribed.
For the heat equations (7), the continuity equations are (10]

BO=0, PY1=0, nQP]=0, nfQ®]=0 (22)

At an edge either 8(9) and 6(1) or naQ,(,O) and n, le) or some combination thereof is
prescribed.

IV. TWO-DIMENSIONAL CONSTITUTIVE EQUATIONS

In this section we obtain constitutive relations for the stress tensor, electric dis-
placement, heat flux and entropy defined in (8). The resulting constitutive equations
are then reduced to those appropriate for the uncoupled equations of anisotropic ex-
tension and elementary flexure by employing Eqs. (12); and (14)1, respectively.
Clearly, the constitutive equations are obtained by substituting from (1)4—7 into
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(8)1, employing (9) and the analogous equations for electrical equations and in-
tegrating through the thickness. From (1)s and (3) we find that the analogous
electrical equations take the form
2
_ 0) _ I3, z3
By= =4 - 500 - (3 -
1 2z
= ) _ 238 (2) _
By = —5-¢ 2 ?

2
DD - G -1
h \h2 (23)

1
~)6®)
P

2
3
B3
As noted earlier, in this low order treatment, we ignore the second order equa-

tions completely, and we do not need the plate strains Sg) in (9)1, which means
that for our purposes here, Eq. (9); takes the form

1
Sij= ’3?5{;) (24)
n=0

which is analogous to (23).

For convenience, we introduce the usual compressed matrix notation for stresses
and strains. In this convention the tensor indices ij or kl are replaced by p or ¢
which take values 1, 2, 3, 4, 5, 6 as i or kl take values 11, 22, 33, 23 or 32, 31 or
13, 12 or 21 respectively. Accordingly, we write constitutive equations (1)4_¢ in the
compressed notation as

1.
Tp = cpqu - Ckak - ,\,,0 - §bupEkE1
1
D; = €;gSq + i Ex + pif + 5Xkii B E; (25)
1
= ASq+peEr + b + §7kjEkEj

where the sum from 1 to 6 on the repeated matrix indices is understood. We also
note that in the matrix notation Eq. (24) takes the form

1
n=0

Similarly, from Eq. (8); we obtain
(0) h w_ [ 27
T = —/—h Tpdzy Ty = /—h T37pdz3 . (27)

Now, substituting from (25) into (27) and recalling the definitions of D,(C"), Qﬁ") and
7™ in (8),, substituting from (26), (23), (4) and (1)7, and integrating through the
thickness, we obtain the following plate constitutive relations

4 1-
0 = 2hcyy SO + 2heapdQ) — ghea,,qsff) +egpp) — 28,600 — Eb,‘,-,,/v,.‘;”
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15

2
T,Sl) = ghiicpqg(l) + _}Leapqg(l) — ih'l 4,(3 +- he 262 — _h3,\ oV _ —b N(l)
DY = 2hes, S ~ 2hers s + SheradD - ek3¢<‘> & 2hpk0<°> +ox uv(‘”

4
DY = 243, O §h2 etad)) + —hze,mds(” - ghesd® + 3 23 ped 4 5 it N

[\RI%)

D = -h% S8 — -h%k 6O 4 —h3 ket @) — éhzew(l
_ —8-h2€k3¢(3)+ h3pk9(0)+ X)kN(Z) (28)
DY = 2h%es, 800 — Lhte ) + shtey, gD - Sheae® + SR 4 SN

1 = 2h2,50) — 2hpa¢(0) + hp ¢ — p3¢™ + 200 4 7,,N(°)

pr) = (1) _ 1) = @)y _ = (2) L Zp3,000 L 2 A
5 pa¢,a + 15 pa¢,a 3hP3¢ + 3h af + 2711N,]
QS"’ = —2h~u-(o,‘;” + 531‘ @)
1 2 1

where the nonlinear electrical terms N,-(;) (n=10,1,2,3) are defined by

0 16 3) 4 0 2
NG = hi2e06) + 1‘03¢,(3)¢.(b) - §(¢,(3)¢,(b) +¢949)
2 16 1
@0+ 6060)) + ZeDsP) + 204
8 2
Ny = (56065 — 6@80)) + 2(s@) — 404D) 4 gD
N = L[48¢<3)¢(3> + 804D 4 15¢(1>¢(1)]
NG = R 0D 80 + 6960) - 24040 4 440
— (D60 1 P gh) 4 §(¢$£)¢§;’ +4576D))
1 4 8 2 8 4
NG = ﬁ[—¢(1)¢(1) + _¢(3)¢(1) - IE¢(2)¢-(I’2) _ E¢(l)¢f;) - ﬁ“s(s)"sf’?) + §¢(z)¢f:)]
N = [ ¢(2)¢,(1)+ ¢(2)¢(3)]
N = h3[315¢“>¢“’ DD + Do) L0400 4 40400
(2) 4(2) 1) () o 2 4(0) 40)
105“5 o)+ 508 + 2y
2 1
N = Rl 3)¢f,?’+5¢(2)¢,‘,,”~B¢<‘)¢ff)+§¢“’¢f£’ S04 040

(29)

@ _ 18 440 4 88 @ Lw,m . 8@
Nss—h[15¢ ¢ AT +2de +=6Hg]




664

16 4
56045 +606) - @05 + 4040

2 1
= 5500485 +65060) + 26064 + 408 D)

1 8 2 8 4
Ny = K806 + 2069060 — g0y - Z oWyl - g0 4 Ly

Nop = b

4 64
N = h2[5¢(2)¢(1) + §5¢(2)¢(3)]

Since we are interested in the low frequency range of extensional and flexural
motion, we do not need the shear and thermal correction factors [10] in the con-
stitutive relations. These constitutive relations are not yet in a useful form for our
purposes because we have not yet imposed the extensional plate relaxation condi-
tions (12); and flexural plate relaxation conditions (14);, which in the compressed
matrix notation take the forms

=0, =0, =9 (30)

T3(1) =0, T4(1) =0, 1'5(1) =0 (31)

In view of (30) and (31) we introduce a matrix index convention which will be

of considerable use in the sequel. We let subscripts u, v, w take the values 3, 4, 5

while subscripts r, s, t take the remaining values 1, 2, 6. This permits us to write
(30) and (31) as

=0, M=o (32)

We may now write (28) 7 in the form
7 = 2he;y S + 2her, SO + 2heq, 4O - %hearqsff)
+ear o) - 2,00 — g NO
i = 2hewsSI + 2heunST + Zheau 6  heaudtd
+ 3 — 282,00 _ %E;ij,gq)

2
T’gl) = _2_h3cr35§1) + ghscrv'gg(;l) + E‘ear¢(¢:) - ihzear‘ﬁ(:)
3 3 3 ¥ 1 ,
4 2 1 (33)
7 1
+ 5h63r¢(2) - ghsz\ra(l) - §b,'j,N,-(j)
2 2 h2
W) = 2p3. oy 23, oy, B
T 3h CwsSy + 3h CwnSy ) + 3
4 2 1. .
+ §h63w¢(2) - §h3)‘w9(1) - Eb,']'le-(j)

m_ L2, (3
eaw¢,a l5h eaw¢,a

Equations (33)2,4 may be readily solved for 5,(,0) and S,(,l), respectively, with the
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result
S£0) = ‘C;$0w35£0) - eawCJM,‘f) + ;eawc;M,(f) - %e\’iwc;} M

- Lo
+ Aweyy0© + 7 i NG (34)
_ 1 _ 2 _ 2 _
551) = —Cv.,l,CwsS,(l) - Ecuul;eaw(ﬁ.(al) + Ecuu{eaw*ﬁfg) - h_zcuul;e?.qu(z)
- 3. .0
+ AwcgloM 4 mb,‘jwcwéij) .
where the matrix sums are over the indices 3, 4, 5 as a result of the conventio‘n.
Substitution from (34) into (33),3, yields

¥ = 20,0 SO) + 2hpe, 40 43—”¢cr¢,<3> + #3r 8@ — 202260 %%Nﬁ}”
2h3 h? 4h? 4h 2 1;
(1) - 2% (1) 4 2 (1 _ =% (3) 4. =1 () _ Zp3)p9(1) _ 130 Ar(1)
Ty 3 FTSSJ + 3 ‘l/)qus,c 15 ¢CT¢,C + 3 ¢3’¢ 3 /\r 2 ‘JTN‘]
(35)
where
Crs = crs — CruC;ul;Cws v Yks = Cks _. eka;zicvs (36)

-1 i i .=l
/\5 = A5 — /\wcwvcvs ) bﬁ,’s = bijs - bt]wcwucvs

We note that the I';, are the Voigt’s anisotropic elastic plate constants and the bfs
are the effective plate electrostrictive constants. The constitutive relations (35) are
in the form required for the equations for anisotropic extension (13) and elementary
flexure (16). At this point we note that the substitution of (15) into (9); yields

5 =, (37)

which is an important relation for the flexural equation. Writing 5’5") in the consti-

tutive equations (28)3_g as two separate terms, one containing S and the other

containing S,(," in accordance with our values for the indices, and substituting from
(34) into the appropriate equations, we obtain

DL = 200 — 200169+ oD — Giao® + 2050 4 Lyr 0
D{’ = 27"3%55’) - %zckcqéf:) + %”;ckcqs,(?) -~ e + SE 00 4 L v
D = 27"3¢k,s§°> - §h3<kc¢,(£> + %3&@,(3) - %20:3(15(1)

- %’;—2@3@6(3) + 2 K00 4 %ZAWN.-(;” + 0N ®

@ _ 2R sy By R R
Dy’ = 3 Yk S 5 Ckede’ + 175Ckc¢,c z Crad

2,5 3h? 1 2
+ ghspko(l) + TO—AijkN,-(j) + ’Z'XijkN;'j)
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4 1
o1® = 2L — 20padQ) + 3h5udD — o) + 2030 4 L N
2 1 4 4 2 1
M = Zp3a2sMW _ 2%, 60 4 2425 40B) _ 2p= 4(2) 4 2320, Lo v
pnl = 3h ’\_gSs 3h pa¢'a + 15h pu(b,a 3hP3¢ + 3h aftt + 27;]N,'J'
(38)
where .
Ckj = €kj + exCrnju » ke = exe + SekuChuCon
¢ = 5ere + TeryCylecw | x‘fjk = Xijk + Ak (39)
Dijk = bijucglers . Br=pi + ekoCouu
a = /\wc;,f,/\u v i =Y+ b,‘jwc;,l))\u
The constitutive equations in (38) are in the form required for use in the plate
electrostatic equation (6) and heat equation (7). However, in order to use the
constitutive equations (35) in the balance equations (13) and (16), they must be

converted from matrix form back into tensor form. This is accomplished simply by
replacing r by ab and s by cd wherever they occur in (35). For example

4h L,
7et) =2TabeaS) + 2 ®) = T eantD + bl — 2000 — Lz O

2h3 h? 4h? 4h 2
TS + 3 beasd®) — Tobead® + Taad® — SR, 00

1, 1
- gbfjabNi(j) (40)

-

Equations obtained by substituting from constitutive equations (40) and (38)
into (6), (7), (13) and (16), along with (9); for 552) and (37) are nine equations in the
nine dependent variables ug_o), ¢, (1), 32, 4(3) 9() and 6(1), which are nonlinear
in the plate potentials ¢(*). By proper substitutions the boundary conditions can
also be written in terms of the same nine variables in each region.

V. SUMMARY OF EQUATIONS

Balance laws

70 + Fb(o) = thﬁgo)

ab,a
wlohs + B+ B = 2pma?
1 0

27113502 +d{ =0

1 1

pl) _
2h @

(41)
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Lo _logy 3 @, 1,0 _
h—;-Dé,)—;Dﬁ,2~h—303 +o D37 =0
QO+ ¢ = ~Tpi®

Q) — QY + ¢V = —1pp®

Strain-displacement relations

1
s© = L0 4 0
(uab +uy,) (42)
)
Constitutive equations
78 = 2T abeaS) + 2hegy 60 -—z/)cab¢< + 3058 — 2h0P,0(0) — bf’abN M
243
) = 2 TSy +—-¢mb¢<” - —¢cab¢<3>+ A aaadl®) - SEAO0 L v
D = 2h¢kcds< ) - 2h4k 60 4 —ckcqs(” (m“) +2hp 6 4 = x" Ny
p{V = —wkc s - <kc¢“>+ c B — —ck3¢<"’>+ 3h3m0“’ + 2><., N
D = 2059 2K p® + -—c 0 — i)
8h
2 (3) 3- 5(0) (0 ) (2)
15 6k3¢ + 3h + A:JkN 2Xl] (43)
DY = —¢ a5 - —c SO + —c $@ — cm‘”
“hsl_’ka(l) + TA N( ) + §XleN'('2)
n® =212, 5 — 25,40 4 2 hp 8@ ~ 53 1 2060 + 5i; N
o = hs/\p S(l) _ _hz- ¢(1) + hz- ¢(3) _ ghﬁstﬁ(z) + 5hadg(l) + 5N-/‘_],j\/'g_l)
QP = —2hn.,(0,‘,‘-” + 83;60)
2
QM = ~3hKiitf)
Continuity conditions
ralrP1=0, [ =0
P} 'gs) P! (0)
nalr I =0, [+ S5 =0, (20, =0
[6™]=0,n=0,1,2,3
na[DP] =0, n[DM] =0 (44)
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na[DP) — KD =0, n[D® — 12D =0
[F1=0, [V]=0, nfQP=0, n[QM]=0
=0, V=0, nf@P=0, nf@M]=0
Definitions of material constants
Trs = Crs = CroCoyCus »  Yks = ks ~ EhuCpicos
A= — /\wc;,icw , iins = Zw,-j, - i);jwc;,fc,,,

-1 p: -1
Ckj = €kj + ervCopin » (ke = 3€ke + SeppCylecw

2 _ (45)
(= 5exe + TeroCoueen s Xijp = Xijk + Aiji
Aijk = bijucgler, , B = Pk + €kuCopAu
&= ducydu,  Fij = %ij + bijwegity
Ranges of indices
4,7,k 1:1,2,3; a,b,c,d:1,2; p,q: 1,2,3,4,5,6; r,s,t:1,2,6; u,v,w:3,4,5
(46)

VI. CONCLUSIONS

A set of two-dimensional plate equations has been derived for the extension and
flexure of a thermopiezoelectric plate under strong electric fields. The equations
are nonlinear in the plate electric potentials and can be applied to fully or partially
electroded actuators or sensors. These equations include the results of (1], [7] and
(13] as special cases.
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